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Stationary Scattering Theory for a Charged Particles
Transport Problem

G. Busoni1 and H. Emamirad2
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We consider a nonautonomous transport problem, the modelization of the
charge exchange dynamics in a monoatomic ionized gas, and apply scattering
theory to its dynamics. The free dynamics corresponds to the evolution of the
total distribution of particles (neutral plus ionized particles) and the perturbed
dynamics corresponds to the evolution of the neutral particles, which is the
solution of a nonautonomous transport problem. The existence of the time-
dependent wave operators was proved by the first author. In the present paper
we follow Howland's formalism in constructing a stationary scattering theory
for this nonautonomous transport problem by studying the evolution equation.
We prove the existence of the wave operators and by using the smooth pertur-
bation technique we obtain the similarity between perturbed and unperturbed
operators.

KEY WORDS: Charged particle transport problem; stationary scattering
theory; wave operators; scattering operator; smooth perturbation.

1. INTRODUCTION

The physical problem concerns the time evolution of the distributions of
neutral and ionized atoms of equal atomic weights taking into account
only interactions giving rise to a charge exchange; that is, in a collision
between an ionized atom and a neutral one, the first becomes neutral
and the latter becomes ionized. This kind of phenomena is important in
mixtures, or plasmas, with low densities so to be allowed to neglect the
ion�ion and neutral�neutral interactions. This phenomenon is explained by
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the charge exchange effect; A1 and A2 being atoms of the same mass, a par-
ticle of type A1 which is ionized and a particle of type A2 which is neutral
react producing a neutral particle of type A1 and a charged particle of
type A2 . This may be represented by the formula

A+
1 +A2 � A1+A+

2

A more thorough description of the underlying physics can be found in
[G-Z-S]. There it is explained why the charge exchange without change in
the sum of the internal energies of the two colliding particles influences the
dynamics of the plasma and of its single components. Moreover the sum of
the kinetic energies of the two particles remains unchanged, so we can con-
sider these collisions to be elastic. We assume also that the charge density
vanishes everywhere, but we disregard the electron distribution. We denote
by f =f (x, v, t) the distribution of neutral particles and by g= g(x, v, t) the
distribution of ions; x # R3 denotes the position of the particle in the
configuration space, v # V/R3 denotes the velocity of the particle, t # R
denotes the time. The balance equations are

�f
�t

+v } {x f =Pf&Rf (1.1)

�g
�t

+v } {xg=Pg&Rg (1.2)

where Pf , Pg , Rf , Rg denote the production and removal rates for neutral
and ionized particles. For sake of simplicity, but allowing for preservations
of mass, momentum, and energy during the single collision, under the
assumption of equal mass for ions and neutral atoms, we put

Pf (x, v, t)=_g(x, v, t) |
V

f (x, v$, t) dv$=Rg(x, v, t) (1.3)

Pg(x, v, t)=_f (x, v, t) |
V

g(x, v$, t) dv$=Rf (x, v, t) (1.4)

The removal rate Rf of particle of type ( f ) is modelled with a total cross-
section _(x, t)=_ times the total number of (g) particles present in x at
time t, and it is proportional to the density of ( f ) particles. Clearly we have
to introduce the dimensional factor _ that in the sequel will be put equal
to one. During the collision between two particles of different types, the
charged one yields its charge to the other (the neutral one) remaining left
neutral. The neutral one obviously becomes charged. The velocities of the
particles are assumed not to change. Therefore Pf=Rg and Pg=Rf .
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Here V is a measurable not necessarily bounded set of R3 whose
measure m(V ) is finite: m(V )��. The integro-differential equations are
supplied with initial data for the two distributions. We can consider the
corresponding abstract Cauchy problem in the space L1(R3_V ), see
[Bus2]. By putting h= f+ g we obtain the system

�h
�t

+v } {xh=0 (1.5)

�f
�t

+v } {x f = &_f |
V

h dv$+_h |
V

f dv$ (1.6)

showing that the total density h evolves as a pure streaming for t # R. Its
evolution depends on the initial distributions of ionized and neutral atoms.
Equation (1.5) is called the advection equation and its corresponding
Cauchy problem will be denoted by

(AE) {
dh
dt

=T0h :=&v } {xh

h( } , 0)=h0 # X

Equation (1.6) for the neutral (or ion) density looks like a linear trans-
port equation with time dependent absorption and production terms,
which really are determined by the initial distributions.

Taking _=1, the Eq. (1.6) can be considered as a nonautonomous
transport problem in the following abstract form

(NTP) {
df
dt

=[T0+A(t)+K(t)] f (t)

f (s)=. # X, s # R

where

[A(t) f ](x, v) :=&\|V
h0(x&tv$, v$) dv$+ f (x, v) for all (x, v) # R3_V

(1.7)

and

[K(t) f ](x, v)=h0(x&tv, v) |
V

f (x, v$) dv$ for all (x, v) # R3_V
(1.8)
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Given a nonautonomous Cauchy problem

(NCP) {
df
dt

=T (t) f (t)

f (s)=. # X, s # R

on a Banach space X with possibly unbounded operator T (t), t # R, on X,
the solutions of (NCP) can be expressed (under appropriate conditions, see
e.g., [Gol], [Paz], [Tan]) by a family [U(t, s)] (t, s) # R 2 in the space L(X )
of bounded linear operators on X satisfying the following properties:

(P1) (t, s) [ U(t, s) from R2 into L(X ) is strongly continuous;

(P2) U(t, t)=I, \t # R;

(P3) The Chapman�Kolmogorov equation holds, i.e.,

U(t, s) U(s, r)=U(t, r), \(t, s, r) # R3

(P4) there is a constant M�1 such that &U(t, s)&�M for all
(t, s) # R2, t�s.

We call such family of operators a bounded strongly continuous propagator
on X.

Let E be a space of X-valued functions on R which will be precised
later. Given a bounded strongly continuous propagator U( } , } ), the formula

etG�( } ) :=U( } , }&t) �( }&t) for � # E, t�0 (1.9)

defines a strongly continuous bounded semigroup on E and is called evolu-
tion semigroup associated to the propagator U( } , } ). Recently a substantial
literature drew attention to the properties of this semigroup. For genera-
tion and perturbation results we refer to [Nag], [Nei], [Nic], [Paq],
[R-R-S1], [R-R-S2] and the references therein. Furthermore, the spectrum
_(G) of the infinitesimal generator of [etG]t�0 is responsible for the
asymptotic behaviour of u(t), via spectral mapping theorem. This is exten-
sively discussed in [L-M], [ET-S1], [R-S2] and [Rau]. Originally this
formalism was used by J. Howland [How] in the Hilbert space context
and by D. Evans [Eva] in the Banach space context to indicate how the
stationary theory of scattering can be applied to problems in the theory of
transitions of a quantum mechanical system. Our purpose in this article
will be the same for a charge exchange transport problem.

From a mathematical point of view the scattering theory which we are
dealing with means investigating if the behaviour of a system which evolves
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according to a perturbed dynamics can be compared with that of a suitable
unperturbed one. The scattering theory for the linear Boltzmann equation
was initiated by J. Hejtmanek [Hej] and B. Simon [Sim]. This gave rise
to a wealth of literatures on this topic (see [Voi], [Pro], [Um1], [Em1],
[Um2], [Em2], [Ste], [A-E], [Mok], [E-P] and [Em3]). All these
papers deal with the scattering theory for autonomous transport equation
in L1 spaces. Recently by assuming some smooth conditions on the initial
distribution h0 , the first author treated the scattering theory for time
dependent transport equation and showed in [Bus1] that (NTP) can be
generated by a strongly continuous isometric propagator U( } , } ). In Sec-
tion 2 we recall the main steps in constructing the propagator U( } , } ).
Taking U0(t, s) :=e(t&s) T0, the existence of the wave operators

W+(s) f := lim
t � �

U0(s, t) U(t, s) f in X

W&(s) f := lim
t � &�

U(s, t) U0(t, s) f in X

is proven (see Theorem 2.1) by assuming that

:\ :=|
b\

sup
x # R3

H(x, r) dr<� (1.10)

where b+#(s, �), b&#(&�, s) and H(x, t)#�V h0(x&tv, v) dv.
Once the wave operators W+(s), W&(s) and consequently the scattering

operators S(s) :=W+(s) W&(s) are well-defined, Howland's programme
[How] was to pass from the time-dependent case to stationary case by
considering the new wave operators

W+(G0 , G) :=s& lim
t � +�

e&tG0etG in E (1.11+)

W&(G, G0) :=s& lim
t � &�

e&tGetG0 in E (1.11&)

where

etG0�( } ) :=U0( } , }&t) �( }&t) for � # E (1.12)

and show that the scattering operator

S :=W+(G0 , G) W&(G, G0) (1.13)

is the multiplication by the operator S(t).
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Our main aim in the present work is to develop the above formalism
for the theory which was introduced in [Bus1]. The Section 3 is devoted
to the characterization of the infinitesimal generators of the evolution
groups etG0 and etG corresponding to the Cauchy problems (AE) and
(NTP). The relationship between these groups through Duhamel's for-
mulae needs to be justified. In the Section 4, we will define the wave
operators given in (1.11+) and (1.11&). The existence of these wave
operators are guaranteed by imposing that H(x, t) total cross-section of the
initial total density has an uniformly bounded X-ray tranformation (see
(4.3) and (4.7)). Similar conditions are used in [Bus1] for obtaining the
wave operators W(s)+ and W(s)& .

The similarity between perturbed and unperturbed dynamics in the
scattering theory passes through the existence of the four wave operators
W\(G0 , G) and W\(G, G0). In the context of quantum scattering theory in
Hilbert space, this is called the completeness of the wave operators and the
intertwining identities imply the similarity between the the dynamics and
their generators. T. Umeda [Um2], introduced this subject in the context
of the Banach lattices and applied his technique to the linear transport equa-
tion in L1 spaces. Later Mokhtar�Kharroubi [Mok] optimized the results of
[Um2] in L1 spaces. Their technique depends heavily upon the positivity
preserving character of the free dynamics and perturbation operators. In the
Section 5 we have used the smooth perturbation technique by maximal use
of the isometric character of the free dynamics operator etG0.

2. STRONGLY CONTINUOUS PROPAGATOR AND
SCATTERING OPERATOR FOR CHARGED PARTICLES
TRANSPORT EQUATION

Put X :=L1(R3_V ), Y :=UCB(R3_V ); they are the complex Banach
spaces of (classes of ) Lebesgue summable functions and of uniformly con-
tinuous bounded functions respectively, with the usual norms (see [B-B,
p. 22]). They have the structure of Banach lattices with positive cones
consisting of the nonnegative functions, which are called positive elements.
Let C 1

0(R3_V ) be the space of continuously differentiable functions with
compact support in R3_V. The operator defined in C 1

0(R3_V ) by T0h :=
&v } {x h has a closure in X denoted again by T0 , whose domain is
D(T0)/C 1

0(R3_V ). This closed operator generates a one parameter
strongly continuous group [etT0]t # R of bounded operators in X acting as

(etT0f )(x, v)= f (x&vt, v) (2.1)
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having the property, for any t # R

&etT0 f &X=& f &X (2.2)

and it preserves the cone of positive functions. We call T0 the streaming
operator. In the space Y we define the streaming operator T� 0 on D(T� 0)

D(T� 0)=[ f # Y : v } {x f # Y ]

(T� 0 f )(x, v)=&v } {x f (x, v)

It generates an isometric positive one parameter strongly continuous group
of linear operators in Y acting as (2.1).

In either space X and Y the abstract Cauchy problem

{
dh
dt

=T0h

h(s)=h0 # D(T0)

where T0 stands for T0 itself or for T� 0 , according to the space, has one and
only one solution for any t, s # R, given by

h(t)=U0(t, s) h(s)=e(t&s) T0h(s)=h0(x&v(t&s), v)

We recall that by a solution in X, or in Y, we mean a function with values
in X, or in Y such that h(t) # D(T0), h is strongly continuously differen-
tiable for t # R, the differential equation and the initial condition at the
starting time s are satisfied. Some definitions are in order to present the
analysis of evolution systems. Let h0 # D(T0) & Y+ (Y+ being the positive
cone in Y ). For t # R, we define

H(x, t) :=|
V

h0(x&wt, w) dw (2.3)

then for the operators A(t) and K(t) defined by (1.7) and (1.8) we have

(A(t) f )(x, v) := &H(x, t) f (x, t)

and

(K(t) f )(x, v) :=h0(x&vt, v) |
V

f (x, w) dw
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The following statements are proved in [Bus1].

(i) H(x, t)=�V etT� 0h0(x, w) dw;

(ii) &A(t) f &X�m(V ) &h0&Y & f &X and &A(t)&=supx �V h0(x&
wt, w) dw;

(iii) A(t) f is continuously differentiable with respect to t # R and

d
dt

A(t) f (x, v)=&f (x, v) |
V

(etT� 0T� 0h0)(x, w) dw

(iv) (K(t) f )(x, v)=(etT� h0)(x, v) �V f (x, w) dw;

(v) &K(t) f &X�m(V ) &h0&Y & f &X and &K(t)&=m(V ) sup(x, v) h0(x, v)

(vi) K(t) f is continuously differentiable with respect to t # R and

d
dt

K(t) f (x, v)=|
V

f (x, w) dw(etT� 0T� 0 h0)(x, v)

We recall that m(V ) is the measure of V. Such results are enough (see
[Bus1] and [Paz]) to prove that T0+A(t) generates an evolution system
on X, say Ua(t, s), and T (t) :=T0+A(t)+K(t) generates another evolu-
tion system on X, say U(t, s). It is also worth to recall that for any t�s
one has

&U(t, s)&=1 (2.4)

(see [Bus 1, Theorem 2.1]).
With these preliminaries it is possible to consider in the space X=X 2

the Cauchy problem for the densities of neutral and ionized particles

(PTP) {
�f
�t

=T0 f +Pf&Rf ,

�g
�t

=T0g+Pg&Rg ,

f (0)= f0

g(0)= g0

where Pf , Pg , Rf , Rg are the bilinear operators defined previously in (1.3)
and (1.4), with domains D(T0)2/X where f0 , g0 # D(T0) & X + & D(T� 0).
If such a system admits a solution, that is a pair of functions f and g with
values in X which are strongly continuously differentiable with respect to
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t # R, belong to D(T0), and satisfy the differential equations and initial con-
ditions, then the pair f and h :=f +g satisfy

{
�f
�t

=T0 f +h |
V

f dw& f |
V

h dw, f (0)= f0

�h
�t

=T� 0h, h(0)=h0= f0+ g0

not only in X=X 2, but in X_Y. The results quoted above assure that
h(x, v, t)=h0(x&vt, v) and consequently that the Cauchy problem (PTP)
has a unique strongly continuously differentiable solution defined for any
t # R, f0 , g0 # D(T0) & D(T� 0) & X + given by

f (t)=U(t, 0) f0

g(t)=U� (t, 0) g0

Since & f (t)&X=& f0&X , from (2.2) &h(t)&X=&h0&X and the norm of L1 is
positively additive it follows that &g(t)&X=&g0&X . Note that U(t, 0) and
U� (t, 0) depend on h0= f0+ g0 .

In order to define the time dependent wave operators we consider as
the unperturbed dynamics that driven by the family U0(t, s) :=e(t&s) T0,
t, s # R, and as the perturbed dynamics that driven by the family U(t, s).
The time dependent wave operators are defined for s # R, h0 # D(T0) &
D(T� 0) & X +, f # X by

W+(s) f := lim
t � �

U0(s, t) U(t, s) f

W&(s) f := lim
t � &�

U(s, t) U0(t, s) f

provided the limits exist with respect to the norm of the space X. We note
that the function t [ U(t, s) f behaves like the function t [ U0(t, s)
W+(s) f for t � +�, and the function t [ U0(t, s) f behaves like the func-
tion t [ U(t, s) W&(s) f for t � &�. We are able to determine sufficient
conditions on h0 in order that the wave operators exist.

Theorem 2.1. Let h0 # D(T0) & D(T� 0) & X + and H(x, t) be defined
as in (2.3). Then for all f # X, and all s�0, the wave operator W+(s) f
exists if

:+ :=|
+�

s
sup
x # R 3

H(x, r) dr<� (2.5)
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and W&(s) f exists if

:& :=|
s

&�
sup
x # R 3

H(x, r) dr<� (2.6)

By using the positivity of the operators U0(s, r), &A(r), and K(r) for
s, r # R, of U(r, s) for r�s, of the equality &U0(s, t) U(t, s) f &X=& f &X , for
all f�0, t�s, and of careful uses of Duhamel's formulae, it is proved in
[Bus1] that

:+ :=sup
t�s

sup
( y, w) # R3_V

|
t

s
H( y+w(r&t), r) dr<�

and

:& := sup
( y, w) # R 3_V

|
s

&�
H( y&w(s&r), r) dr<�

are the sufficient conditions for the existence of the wave operators W+(s)
and W&(s). Hence (2.5) and (2.6) are the obvious consequence of these
results.

3. CHARACTERIZATION OF THE EVOLUTION GROUP

Denote by E :=C0(R, X ) the space of continuous X-valued functions
vanishing at \�, with the supremum norm. By a slight modification all
the results of this section can be carried over to E :=L p(R, X ) (see [Eva]).

The right translations [T0(t)]t # R , acting on E are defined by

T0(t) �(s) :=�(s&t) for s, t # R (3.1)

and are a C0 -group on E. This group is well understood and its generator
is &d;

d� :=�$ with D(d) :=[� # E & C1(R, X ) | �$ # E ]

Now, let us define a bounded multiplication operator on E as follows:
For each , # C0(R), the operator M(,) on E defined by

[M(,) �](t)=,(t) �(t) for all � # E
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is called bounded scalar multiplication operator on E. Let [A(t)]t # R be a
family of strongly continuous bounded operators on X such that &A( } )&�

:=supt # R &A(t)&<�. To such a family we can associate an element A of
L(E ) by

[A�](t)=A(t) �(t) for all � # E

such that A commutes with M(,), for all , # C0(R). Such an operator is
called bounded multiplication operator on E. We have &A&=&A( } )&� and
we refer to [Eva] for the characterization of these operators. It is not hard
to verify that if the operators A(t) are invertible in L(X ), then A is also
invertible and A&1, given by [A&1�](t)=A(t)&1 �(t), for any � # E. This
consideration allows us to define an invertible bounded multiplication
operator U on E that acts in the following way for any t # R and any � # E

[U�](t)#U(t, 0) �(t)

and write

etG=UT0(t) U&1 (3.2)

Now we are in a position to specify the particular properties of the
evolution group etG when the corresponding U(t, s) is the propagator for
charged particles transport problem (NTP) defined in the previous sections.

Theorem 3.1. Under the assumptions of Section 2, etG is a strongly
continuous group of isometries in E. This evolution group etG is similar to
the group of translations T0(t).

Proof. The group property e(t+s) G=etGesG is equivalent to the
Chapman�Kolmogorov equation (P3). Denote by Cc(R, X ) the space of
continuous functions �: R [ X with compact support and norm &�&=
sups # R &�(s)&X . For � # Cc(R, X ) we obtain etG� # Cc(R, X ), since

&etG�&�&=sup
s # R

&U(s, s&t) �(s&t)&�(s)&X

the properties (P1) and (P4) of U(t, s) imply that limt � 0 &etG�&�&=0
and the strong continuity follows from the density of Cc(R, X ) in E. By
virtue of (2.4) and the fact that the right translation (3.1) is isometric, it
follows that etG is also isometric in E. Finally, the similarity with T0(t)
follows from (3.2). K
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The operators A(t), K(t) and consequently B(t)=A(t)+K(t) are
uniformly bounded in X. For T (t)=T0+A(t)+K(t) with D(T (t))=D(T0)
and for all f # D(T (t)) we have

�
�t

U(t, s) f=T (t) U(t, s) f and
�
�s

U(t, s) f=&U(t, s) T (s) f

Let us denote by B the bounded multiplication operator on E corre-
sponding to the family [B(t)]t # R on X and by T the unbounded multi-
plication operator corresponding to the family [(T (t), D(T0))] t # R of
unbounded operators on X. The operator T with domain

D(T) :={� # E } lim
t � 0

1
t

[U( } , }&t)&I ] �( } ) # E= (3.3)

is defined by

[T�]( } ) :=lim
t � 0

1
t

[U( } , }&t)&I ] �( } ) (3.4)

In the same manner we can define the multiplication operator T0 on the
space E by replacing U(t, s) with U0(t, s) in (3.3) and (3.4). The following
Theorem characterizes G the generator of the evolution group etG.

Theorem 3.2. Let h0 # D(T0) & D(T� 0) & X +. With the notation
above D :=D(d) & D(T) is a core for G and for any � # D we have

G�=T�&�$=T0 �+B� (3.5)

Proof. For � # E and t>0, let us denote by

$(t)=
1
t

(etG�&�)=$1(t)+$2(t) (3.6)

where

$1(t)=
1
t

U( } , }&t)(�( }&t)&�( } ))

and

$2(t)=
1
t

(U( } , }&t) �( } )&�( } ))
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For � # D(d) & D(T), t � 0, $1(t) converges to &�$ and $2(t) con-
verges to T� in E. Hence $(t) converges to G� which implies that
� # D(G). Conversely if � # D(d) & D(G), then the same argument yields
� # D(T). This means that

D=D(d) & D(T)=D(d) & D(G)

Since &d and G are the generators of the C0 -semigroups T0(t) and etG,
D(d), D(G) and consequently D are dense in E.

In order to prove that D is a core for G, it suffices to show that it is
invariant under the action of the semigroup etG (see [Dav, Theorem 1.9]).
Since for � # D(G) one has etG� # D(G), it suffices to show that etG� # D(d)
for � # D. For this we perform an idea of [Nic, Theorem 2.8] and we write
formally for � # D(G),

(etG�)$ (s)=
�
�s

U(s, s&t) �(s&t)

=
�
�{

U({, s&t) } {=s
�(s&t)+

�
�{

U(s, {) } {=s&t
�(s&t)

+U(s, s&t) �$(s&t) (3.7)

Since

\ �
�t

etG�+ (s)=
�
�t

U(s, s&t) �(s&t)

=&
�
�{

U(s, {) } {=s&t
�(s&t)&U(s, s&t) �$(s&t)

the last two terms of (3.7) are well defined and the first term is

�
�{

U({, s&t) } {=s
�(s&t)=T (s) U(s, s&t) �(s&t)

In order to prove that

lim
|s| � �

&T (s) U(s, s&t) �(s&t)&X=0
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we will decompose T (s) as T (s)=T0+A(s)+K(s), will use the uniform
boundedness of A(s) and K(t) (see [Bus1, Lemma 1]), isometry of
U(s, s&t) for t>0 and the fact that

&T0U(s, s&t) �(s&t)&X=&U(s, s&t) T0�(s&t)&X=&T0�(s&t)&X

goes to zero as |s| � �, for all � # C0(R, D(T0)) which is dense in E.
Finally (3.5) follows from (3.6) by taking t � 0. K

As a consequence of this Theorem we can consider the operator G as
the closure of G defined by (3.5) on D.

In [Bus1, Theorem 2], it is shown that T0+A(t) generates the following
propagator

[Ua(t, s) f ](x, v)= f (x&(t&s) v, v) exp {&|
t

s
H(x&(t&r) v, r) dr= (3.8)

and that T0+A(t)+K(t) generates a propagator U(t, s) which satisfies the
Duhamel's formula

U(t, s)=Ua(t, s)+|
t

s
Ua(t, r) K(r) U(r, s) dr

Hence, for � # E,

U(s, s&t) �(s&t)

=Ua(s, s&t) �(s&t)+|
s

s&t
Ua(s, r) K(r) U(r, s&t) �(s&t) dr (3.9)

Now, if we denote by [etGa]t # R the evolution group given by

[etGa �]( } )=Ua( } , }&t) �( }&t), for all � # E

by putting {=r&s+t in the integral of (3.9), we obtain the Duhamel's
formula for etG; namely

etG=etGa+|
t

0
e(t&{) GaKe{G d{ (3.10)

where K is the bounded multiplication operator corresponding to the
family [K(t)]t # R . In the same way we can write

etG=etG0+|
t

0
e(t&{) GBe{G0 d{ (3.11)
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Since U0(t, s), Ua(t, s) are positive for all t, s # R and U(t, s) is positive
for t�s, we obtain the positivity of etG0, etGa for all t # R and positivity of
etG for t�0 on the Banach lattice E. Furthermore, since [K(t)]t # R is a
family of positive operators in X, for any ��0 in E the function
t [ �t

0 e(t&{) GaKe{G� d{ is positively increasing in E, consequently

etG�etGa for all t�0 (3.12)

Lemma 3.3. Let h0 # X +, and H(x, t)=�V h0(x&tv, v) dv, then

&etGa �&E�{
&�&E if t�0

(3.13)
sup
s, x, v

exp {|
&t

0
H(x+_v, s+_) d_= &�&E if t�0

Proof. For t�0, &etGa �&E�&�&E is direct consequence of (3.8), and
for t�0,

&[etGa�](s)&X=&Ua(s, s&t) �(s&t)&X

�&�(s&t)&X sup
x, v

exp {|
&t

0
H(x+_v, s+_) d_=

This implies (3.13). K

4. STATIONARY SCATTERING THEORY

In the context of the charged particles transport equation, suppose
that one is given two bounded evolution groups defined by (1.9) and
(1.12). Since U0(t, s) is isometric in X for all t, s # R, thus etG0 is also
isometric in E and U(t, s) being isometric for t�s, thus etG is also isometric
in E for t�0. Hence one can view the existence of two wave operators

W+(G0 , G)#s& lim
t � +�

e&tG0etG (4.1+)

W&(G, G0)#s& lim
t � &�

e&tGetG0 (4.1&)

and the related scattering operator S defined by (1.13) in E.
There are two ways to prove an existence theorem for (4.1). The first

way is to use Theorem 2.1 together with the fact that for � # E,

[e&tG0etG�]( } )=U0( } , }+t) U( }+t, .) �( } ) (4.2+)
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and

[e&tGetG0 �]( } )=U( } , }+t) U0( }+t, } ) �( } ) (4.2&)

by taking t � \� in (4.2\). These considerations show that the wave
operators W\ are the multiplication operators by W\( } ) and the scattering
operator S is therefore the multiplication operator by S( } ). If we denote
by S=S(0) the usual scattering operator which is referred to initial time
t=0, then U0 SU&1

0 is multiplication by S (see [Eva, Theorem 2.2]).
The second way is to apply directly the smooth perturbation theory

for the existence of W\ . The uniform sufficient conditions for the existence
of W\( } ) in X imply the existence of W\ in E. This method has the advan-
tage of not using the regularity condition on the initial datum h0 .

Theorem 4.1. Let h0 # X+ , H(x, t)=�V h0(x&tv, v) dv and

:&= sup
(x, v, s) # R3_V_R

|
0

&�
H(x+tv, s) dt<� (4.3)

Then the wave operator W&(G, G0) exists in L(E ).

Proof. Suppose that for any � in some dense subspace of E we have

|
0

&�
&BetG0 �&E dt<� (4.4)

By applying the Duhamel's formula (3.11) for t<0, we obtain

e&tGetG0 �=�+|
0

t
e&sGBesG0 � ds (4.5)

By virtue of Cook's lemma, the existence of the limit (4.1&) follows from
(4.4), while &etG&E=1 for t�0.

In order to prove (4.4), we remark that

&BetG0 �&E=sup
s # R

&B(s) U0(s, s&t) �(s&t)&X

=sup
s # R

|
R3_V

|(A(s)+K(s)) �(s&t, x&tv, v)| dx dv
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Since for h0�0 we have

|
R3_V

|K(s) �(s&t, x&tv, v)| dx dv

�|
R3_V

h0(x&sv, v) |
V

|�(s&t, x&tv$, v$)| dv$ dx dv

=|
R3_V

H(x, s) |�(s&t, x&tv$, v$)| dx dv$

=|
R3_V

|A(s) �(s&t, x&tv, v)| dx dv

the following estimate

|
0

&�
&BetG0 �&E dt

�2 sup
s # R

|
0

&�
|

R3_V
H(x, s) |�(s&t, x&tv, v)| dx dv

�2 \ sup
(x, v, s) # R 3_V_R

|
0

&�
H(x+tv, s) dt+ &�&E (4.6)

together with (4.3) imply the Theorem. K

For the existence of W+(G0 , G) we need the following Lemma.

Lemma 4.2. Let h0 # X+ , H(x, t)=�V h0(x&tv, v) dv and

:+= sup
(x, v, s) # R3_V_R

|
�

0
H(x+tv, s) dt<� (4.7)

Then the wave operator W+(G0 , G) exists iff W+(Ga , G) exists in L(E ).

Proof. Suppose that the wave operator W+(G0 , Ga) exists. Since

e&tG0 etG�=e&tG0 etGa e&tGa etG�

the wave operator W+(G0 , G) exists iff W+(Ga , G) exists in L(E ). For the
existence of W+(G0 , Ga) we write

[e&tG0etGa] �(s)=U0(s, s+t) Ua(s+t, s) �(s)

=exp {|
t

0
h(x+{v, {+s) d{= �(s)
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for all � # E. Thus, Lebesgue's dominated convergence theorem, together
with (4.7), shows the existence of W+(G0 , Ga). K

Remark 4.3. As the existence of W+(G0 , Ga) is implied by (4.7), it
follows readily that this condition implies also the existence of W&(Ga , G0).
Similarly the existence of W&(G0 , Ga) and W+(Ga , G0) follows from (4.3).

Theorem 4.4. Under the hypothesis of Lemma 4.2, the wave
operator W+(G0 , G) exists in L(E ).

Proof. By virtue of Lemma 4.2, it suffices to show that W+(Ga , G)
exist. The action of the semigroup e&tGa on etG given by (3.11) implies that

e&tGa etG�=�+|
t

0
e&sGaKesG� ds, for all � # E

The Lemma 3.3 yields

|
�

0
&e&rGaKerG�&E dr�|

�

0
exp \|

r

0
H(x+tv, t+r) dt+ &KerG�&E dr

�:+ |
�

0
&KerG�&E dr

for all � # E. On the other hand

|
�

0
&KerG�&E dr�sup

s # R
|

�

0
&K(s) U(s, s&r) �(s&r)&X ds

=sup
s # R

|
s

&�
&K(t+r) U(t+r, t) �(t)&X dt

�; &U( }+r, } ) �( } )&E�; &�&E

where ;=e:+&1. Here the last inequality is shown in [Bus1, p. 205].
Hence the existence of the wave operator W+(G0 , G) follows from Cook's
lemma. K

5. SIMILARITY BETWEEN PERTURBED AND UNPERTURBED
OPERATORS

In the last section we have analysed the existence of the wave
operators W+(G0 , G) and W&(G, G0) given by (4.1)\ . In the same way one
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can prove the existence of four wave operators W\(G0 , G) and W\(G, G0)
given by

W\(G0 , G)#s& lim
t � \�

e&tG0 etG (5.1\)

W\(G, G0)#s& lim
t � \�

e&tGetG0 (5.2\)

It is a standard result that the existence of each wave operator implies
the correspondent intertwining identity in the following list

(a)

etGW\(G, G0) f=W\(G, G0) etG0 f ; f # E

(b)

GW\(G, G0) f=W\(G, G0) G0 f ; f # D(G0)

(c)

etG0W\(G0 , G) f=W\(G0 , G) etGf ; f # E

(d)

G0W\(G0 , G) f=W\(G0 , G) Gf ; f # D(G)

Furthermore we have

W\(G, G0) W\(G0 , G) f=W\(G0 , G) W\(G, G0) f= f ; f # E

These relations imply that

W\(G, G0)&1=W\(G0 , G) and W\(G0 , G)&1=W\(G, G0)

Hence the existence of the pair (W&(G, G0), W&(G0 , G)) or (W+(G, G0),
W+(G0 , G)) implies the similarity of two operators G and G0 and the
correspondent C0-groups in the following sense

W\(G0 , G) GW\(G, G0) f=G0 f , f # D(G0)

W\(G, G0) G0 W\(G0 , G) f=Gf , f # D(G)

W\(G0 , G) etGW\(G, G0) f=etG0 f , f # E

W\(G, G0) etG0W\(G0 , G) f=etGf , f # E
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The following theorem ensures the existence of the wave operators
(5.1\) and (5.1\).

Theorem 5.1. Let :& and :+ be the real numbers defined in (4.3)
and (4.6). If one of the conditions

:&< 1
2 (5.3)

or

:+< 1
2 (5.4)

are satisfied, then the four wave operators W\(G0 , G), W\(G, G0) exist.
Remark that for similarity between G and G0 , we do not need to prove

the existence of all the wave operators. The existence of the pair
(W+(G0 , G), W+(G, G0)) or (W&(G0 , G), W&(G, G0)) is sufficient for proving
this similarity. But, as we will see, the existence of W+(G, G0)) is condi-
tioned by (5.3) and this condition infers automatically the existence of the
three other wave operators. A similar situation occurs for the existence of
W&(G0 , G).

The proof of the above Theorem can be performed through a sequence
of Lemmas.

Lemma 5.2. The following assertions are equivalent

(a)

|
0

&�
&BetG0 f &E dt�# & f &E , f # E (5.5)

(b)

|
�

0
&BetG0 f &E dt�# & f &E , f # E (5.6)

Proof. Take r>0 and s=t&r in (5.5), then

|
r

0
&BetG0 f &E dt=|

0

&r
&Be(s+r) G0 f &E ds

�# &erG0 f &E

�# & f &E

Since r is an arbitrary number, we get (5.6). The proof of the converse is
similar. K

396 Busoni and Emamirad



Lemma 5.3. Suppose that in one of the relations (a) or (b) of
Lemma 5.2 we have #<1. Then the C0 -group [etG]t # R is uniformly
bounded on R.

Proof. For this we use Duhamel's formula which asserts that

etG=etG0+|
t

0
e(t&s) GBesG0 ds, t # R

Let {>0. For t # [0, {] and f # X, from (5.5) we have

&e&tGf &E�&e&tG0 f &E+ sup
s # [0, {]

&e&sG&L(E ) |
0

&{
&BesG0 f & ds

�& f &E+# sup
s # [0, {]

&e&sG&L(E ) & f &E

and therefore,

sup
t # [0, {]

&e&tG&L(E )�
1

1&#

Since { is choosen arbitrary, we conclude the boundedness of [etG] t # R

on R& . The same argument gives the boundedness of [etG] t # R on R+ by
using (5.6). K

Lemma 5.4. Under the assumption of Lemma 5.3 we have one of
the following equivalent assertions.

(a)

|
�

0
&BetGf &E dt<�, f # E (5.7)

(b)

|
0

&�
&BetGf &E dt<�, f # E (5.8)

Proof. By Lemma 5.2, (5.5) and (5.6) are both satisfied. Hence etG is
uniformly bounded on R. This implies the equivalence between (a) and (b).
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In fact assume (a) and apply the principle of uniform boundedness, then
there exists a constant C�0, such that

|
�

0
&BetGf &E dt�C & f &E , f # E

Let r>0 and s=t+r, then

|
0

&r
&BetGf &E dt=|

r

0
&Be(s&r) Gf &E ds

�C &e&rGf &E

�CM & f &E

r being arbitrary, one gets (b). For the converse we may argue in the
similar way.

Thus, for the proof of this Lemma we have only to show one of the
statement of this Lemma. Let us prove (5.8).

For this, we present the C0 -group etG by its Dyson�Phillips expansion
given by

etG= :
�

n=0

Tn(t) (5.9)

where T0(t)=etG0, and

Tn(t)=|
t

0
e(t&s) G0BTn&1(s) ds, (n�1) (5.10)

For any f # E,

|
0

&�
&BetGf &E dt�|

0

&� "B :
�

n=0

Tn(t) f "E
dt

hence it is enough to show that

:
�

n=0
|

0

&�
&BTn(t) f &E dt�C & f &E (5.11)

where, C=(1&#)&1. We shall prove by induction that

|
0

&�
&BTn(t) f &E dt�#n+1 & f &
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which is given in the assumptions for n=0. Suppose

|
0

&�
&BTn&1(t) f &E dt�#n & f &E (5.12)

Then,

|
0

&�
&BTn(t) f &E dt=|

0

&� "B {&|
0

t
e(t&s) G0BTn&1(s) f ds="E

dt

�|
0

&�
|

0

&�
&BetG0[e&sG0BTn&1(s) f ]&E dt ds

�# |
0

&�
&e&sG0BTn&1(s) f &E ds (by (5.5))

�# |
0

&�
&BTn&1(s) f &E ds

�#n+1 & f &E (by (5.12))

This implies (5.11). K

Proof of the Theorem 5.1. Suppose that one of the conditions (5.3)
or (5.4), say (5.3), is satisfied then according to Theorem 4.1 the wave
operator W&(G, G0) exists and (4.6) shows (5.5) with #<1. As the
Duhamel's formula asserts (4.5), one can write also that

e&tGetG0�=�&|
t

0
e&sGBesG0 � ds (5.13)

and

e&tG0 etG�=�+|
t

0
e&sG0BesG� ds (5.14)

The Lemma 5.2 asserts that (5.5) implies (5.6) and since etG is uniformly
bounded on R& , by letting t � � in (5.13) one gets the existence of
W+(G, G0). For the the existence of W\(G0 , G), one takes t � \� in (5.14)
and uses Lemma 5.4. K

All the above results concerning the existence of the wave operators
lead us naturally to the notion of G0 -smoothness.
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Definition 5.5. Let G0 be the generator of a C0-group etG0 on a
Banach space E. A linear operator B is called G0-smooth with constant
:>0, if

|
�

&�
&BetG0f &E dt�: & f &E (5.15)

holds for a dense set of vectors f in E (and hence for all f in E ).

Corollary 5.6. Let :=:&+:+ . If B is G0-smooth with constant
:<1. Then the wave operators W\(G, G0) and W\(G0 , G) exist.

Proof. One of the conditions (5.3) or (5.4) is necessarily satisfied.
Since the contrary leads to contradicting with :<1. Thus the Theorem 5.1
implies the result. K
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